Winter 2-3-2022

The World as We Know It: Maps and Atlases from Special Collections

Archives and Special Collections
Sandor Teszler Library

Luke Meagher
meagherla@wofford.edu

Follow this and additional works at: https://digitalcommons.wofford.edu/libraryexhibits

Part of the Ancient, Medieval, Renaissance and Baroque Art and Architecture Commons, Applied Mathematics Commons, Book and Paper Commons, Cosmology, Relativity, and Gravity Commons, Digital Humanities Commons, Earth Sciences Commons, European History Commons, Graphic Design Commons, History of Science, Technology, and Medicine Commons, Illustration Commons, Intellectual History Commons, Medieval History Commons, Philosophy of Science Commons, Printmaking Commons, Race, Ethnicity and Post-Colonial Studies Commons, and the Social History Commons

Recommended Citation
Special Collections, Archives and and Meagher, Luke, "The World as We Know It: Maps and Atlases from Special Collections" (2022). Library Exhibits. 9.
https://digitalcommons.wofford.edu/libraryexhibits/9

This Exhibit is brought to you for free and open access by the Sandor Teszler Library Archives and Special Collections at Digital Commons @ Wofford. It has been accepted for inclusion in Library Exhibits by an authorized administrator of Digital Commons @ Wofford. For more information, please contact stonerp@wofford.edu.
The World as We Know It: Maps and Atlases from Special Collections

Gerhard Mercator (1512-1594) envisioned an ambitious new type of publication: one work that would describe the creation of the world, the heavens and Earth, a history of the political states and a chronology of the world. We know such works today as atlases.

Around 1564, Mercator saw the need for a comprehensive collection of maps of the Earth and sky, including visualizations of all 16th-century knowledge, bound together in one book. In Mercator’s era, maps were bought singly on one leaf of paper and collected by their owners.

Mercator spent the rest of his life striving to achieve this goal. In 1595, a year after Mercator’s death, his last living son, Rumold, also a cartographer and engraver, completed and published his father’s work. The title is medieval Latin: *Atlas sive Cosmographicae Meditationes de Fabrica Mundi et Fabricati Figura* which roughly translates to “Atlas or Cosmographic Reflections on the Structure and Shape of the World.”

Gerhard Mercator named his work after the Greek Titan Atlas, King of Mauritania, philosopher, mathematician and astronomer who, in Greek mythology, was condemned by Zeus to hold up the sky. The title page of Mercator’s 1595 publication features a depiction of a figure presumed to be Atlas holding a celestial globe, with a terrestrial globe at his feet.

The Mercators’ atlas continued to be published in new editions for another 40 years. During and since that time, cartographers have produced and published atlases that reflect the increasing contemporary knowledge of the world, an implicit acknowledgment that what we understand of the Earth, space and our fellow humans is constantly evolving.

Selections of maps and atlases from Sandor Teszler Library’s Special Collections are presented in this exhibit to show how, over time, cartographers have represented the world as we know it.
ATLAS SIVE COSMографИACÆ MEDITATIONES DE FABRICA MUNDI ET FABRICATI FIGURA.
Denuò augustus

GERARDI MERCATORIS
This hand-colored copperplate engraving is the work of Rumold Mercator (1545-1599), Gerhard Mercator’s son. It appears in the 1587 printing and translation of Geography by Strabo (circa 64 BCE-24 CE) in Special Collections as well as the 1595 Mercator atlas.

The elder Mercator is famous for his 1569 map projection. The Mercator projection is still used on some modern maps and was the prevalent projection for hundreds of years, but now it competes with newer projections that attempt to more accurately represent the spherical Earth in the flat, two-dimensional format of a map.

The copy of Geography in Special Collections is the first critical edition of the work. It was printed in Geneva during the Renaissance. Strabo’s original Greek text was translated into medieval Latin by Isaac Casaubon (1559-1614).

Geography is an ancient text and a critical source for classical studies. Written around 20 CE, it describes the world and its people through Strabo’s experience and research.

Wofford’s copy of Geography has been at the college since 1854, the year of our founding, and appears to have a direct chain of custody from its printing to today. The editor, Isaac Casaubon, owned this copy first. He gave it to Philippe de La Canaye, sieur de Fresnes (1551-1610), and it was then held for two generations among a family in Britain until Dr. James Carlisle (1825-1909), professor and later college president, acquired it at some point and gave it to the college in June of 1854.

Critical questions

How might this map have been used? And by whom? For what audience was it intended?

What might have been the sources used to make this map?

What other questions do you have about this map?
LAND ACKNOWLEDGMENT

Maps portray both geography and history. Wofford College stands on lands previously held by Indigenous peoples. The maps presented here reflect therefore both Europeans’ arrival and settlement and the Indigenous population’s displacement from its ancestral lands.

This exhibit acknowledges the human costs of European settlement and is dedicated to the Indigenous persons and their descendants.
This map appears in John Kitto's *The Land of Promise, or, A topographical description of the principal places in Palestine, and of the country eastward of Jordan, embracing the researches of the most recent travelers*, published in London around 1852. It is the work of Prussian cartographer August Petermann (1822-1878), who spent much of his career based in England and Scotland, and published this map, “Physical map of Palestine and the adjacent countries,” in his 1850 *Atlas of Physical Geography*. Petermann’s atlas contains 15 maps, 13 of which depict the whole world with overlaid visualizations of several subdisciplines of physical geography: geology, hydrography, meteorology, botanical geography, zoological geography and ethnography. Petermann also includes two “special maps” in his atlas, one of the British Isles, and this physical map of Palestine.

This map is a [lithographic print](#) in black ink and colored by hand, with meticulously documented topographical contours. Five inset topographic visualizations that correspond with lines drawn between letters on the map are placed along the print’s edges. A sixth inset diagram adds the element of time to illustrate seasonal changes in and differences between the physical features of the area.

In the text that accompanies this map in his atlas, Petermann writes, “Palestine, in point of physical geography, is one of the singular countries of the world; but till very lately our knowledge of it was extremely defective ... It was from the absence of scientific measurements, particularly of the comparative elevation of the country, that many questions in the Biblical and physical history of the Holy Land remained unsolved.” He draws attention to the “depression of the Dead Sea below the level of the ocean” and he believes that “in studying the geography or history of the Holy Land, its Orography (the study of topography of mountains) must be carefully considered.” Hence the insets that visualize the valleys and ridges of the area.

Critical questions

Do you think this area is, as suggested, a special one in terms of physical geography?

Why would an accurate map of the physical geography of this area have value to a reader in 1852? Why would the specific elements in this map have been included?

What’s the importance of mountain ranges in this area?

What sources might have been used to make this map?

Why and for whom might the weather data have been included?
The vertical and longitudinal profile of mountains between the letters A and B on the map: “Section of the Line AB, extending from the Mts. of Lebanon through the West Tablelands and the peninsula of Sinai.”

Elevation profile between C and D, now known as the Jordan Rift Valley.
Historical atlases developed as a format to help readers better visualize the passage of time in maps. In such works, static images viewed sequentially show how the movement of people, borders or jurisdictions, prevalence of certain languages, and ethnic or religious information associated with places changed through time.

Edward Quin (1794-1828) took a distinct and visually striking approach in his Atlas in a Series of Maps of the World as Known in Different Periods (first published in 1830) by attempting to spatially visualize not only historical eras in a global context but also knowledge of space over time. “Known” areas are mapped. Areas beyond the “known” world are visualized as clouds, obscuring “unknown” lands, the clouds’ edges representing the presumed frontier of contemporary spatial knowledge.

Quin was neither a cartographer nor a historian, but a barrister who conceived of the map innovations we see in his atlas. The first (1830) and second (1836) editions of the work contain a historical text by Quin that summarize the eras the maps depict. The third edition (1846), as seen here, omits the text in the atlas, publishing it in a separate volume. The third edition also differs from the others in that it includes hemispherical projection (half- and full-circle boundaries) and a lighter tint to the clouds. In the first two editions, the clouds are black and cover most of each of the first several pages.

Critical questions

How can the author claim to know what people thought or knew hundreds or thousands of years before he lived?

What do you think was the purpose of this set of maps?

Which perspectives do you think were considered in making this map? Which were not?
Human knowledge of and investigation into the world expanded in the 19th century. The new and evolving social sciences, quantitative methods of analysis, innovations in graphic design and advanced printing technology broadened the scope of atlases to include more than maps. Atlases of the era were new iterations of Mercator’s grand vision: the representation of the known universe in one work.

The visualizations seen here from George Cram’s Unrivaled Atlas (1889) and New Universal Atlas (1849) reflect that evolution. Some images depict physical geography, the traditional realm of maps and atlases. Others are preoccupied with the built environment, infrastructure and technology. Still others are concerned with human geography, or what we know about how humans take up space.

“The Solar System” from Cram’s atlas illustrates what was then contemporary scientific knowledge about Earth’s orbit and its relationship to the sun and the other planets in our system.

The central image, from New Universal Atlas, visualizes the respective lengths and heights of “principal” rivers and mountains.

“Diagram showing the comparative miles of Railroads and Telegraphs of the World” (from Cram’s) is an example of the type of data visualization that took root in the 19th century and began to be included in atlases. The data, though, is not strictly geographical but about the built environment or technological infrastructure.

Critical questions

Who do you think was the intended audience for these images?

What might have been the sources of the information portrayed in these visualizations?

What was the significance of measuring and visualizing the length of telegraph lines? Railroad lines?

Are there any modern equivalents to telegraph lines or railroad lines? What metrics might we use today to measure technological and/or societal development?
Bibliography

