Document Type

Honors Thesis

Publication Date

5-10-2019

Abstract

In this paper, we derive a solution to the telegrapher equation. We then apply a bifurcation parameter to the telegrapher equation in order to analyze the behavior of the solution as it changes classification. In order to obtain the solution to both the telegrapher and modified telegrapher equation, we derive the heat equation and telegrapher equation using a continuous random walk. We also solve the heat equation using invariant properties of a particular solution, a random walk analysis, and a Fourier-Laplace transform. The solution to the telegrapher equation contains modified Bessel functions, so we also derive the solutions to both the Bessel and modified Bessel equation. Lastly, we rigorously obtain a solution to the telegrapher equation with an added bifurcation parameter. This solution represents a complete distribution of the solution to the standard telegrapher equation as its solutions transition between classifications.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.